返回首页

蔚来智驾的大模型之路:自研芯片+世界模型+群体智能

时间:2024-07-29 来源:原创/投稿/转载作者:管理员点击:

  李斌说,2023年的第一届NIO IN像是一个大纲,第一次对外完整展示了蔚来布局的12大技术领域。

  其中,在智能驾驶领域,从模块化的智驾方案,向端到端大模型的切换成为今年最重要的技术风潮。未来一周内,小鹏、理想等都将公布各自在端到端智驾上的进展,蔚来率先出牌。

  9031上ISP的高处理位宽配合降噪算法,能提供很高的动态处理范围,从而使暗光下图像细节更丰富,更容易看清几百米外的标识、细小物体。

  。不过,李斌也提到,「(芯片)它的作用,要明年的一季度才可以发挥出来。即使芯片上车了,依托于新的架构体验要落地也是需要时间,期望值要管理好。」

  这可能也意味着,在NT3这代平台上,蔚来自研的神玑和第三方的计算芯片可能要并行一段时间,实现平滑过渡。

  神玑NX9031是蔚来内部的芯片团队与智驾团队花费了几年时间联合定义的。它很重要的一项特性,就是为世界模型原生打造。

  。蔚来认为,一个足够聪明的智能体,应当具备想象重建(空间理解)和想象推演(时间理解)的能力,而端到端的模型,不必然具备这两个核心能力。

  蔚来世界模型(NIO World Model,简称NWM),去年已经开始规划,但当时的NIO IN还不太成熟。

  2分钟的视频长度,可以用来预测未来2分钟内将发生的驾驶场景;在轨迹规划方面,MWM目前每0.1秒能生成216种可能的轨迹,而每0.1秒后再根据环境动态重新生成216种轨迹,让系统选出最佳的驾驶策略。

  李斌说,NWM这几个月的进展非常快,是「跃迁式的,几个月前还只能生成几十秒」。2分钟意味着即使开得很慢(30公里/小时),也可以覆盖到未来1公里将发生的各种驾驶情况。

  空间理解能力,NWM通过生成模型重构传感器输入泛化信息,而端到端模型学习任务单一、抽取信息有损失;

  数据要求,NWM使用无标注的数据进行自监督学习,后者依赖轨迹信号信息密度低、感知标注辅助训练,成本高而效率低。

  。蔚来接下来的工作,是将NWM实现车端的部署。少卿透露,今年Q4会有机会「给大家一些体验」。

  与NWM配套,蔚来开发了仿真器NSim(NIO Simulation)。在整个数据链路上,车端的群体智能 + NSim理论上可以给NWM提供源源不断的数据。

  以数据收集为例,如果没有量产车队,一般的智驾公司持有的测试车辆最多在几百台级别,而几百台真值采集车光持有成本就达到几亿元。

  。而群体智能,多用一块OrinX的设计,使车辆不光在智驾状态下,在非智驾状态下也能获取到有效数据。

  蔚来在Banyan 2.6.5版本中上线亿公里的数据中获取到了1万个碰撞事故事件。实际上,在NIO IN上公布的蔚来用户智驾领航的总里程还只有11亿公里(尽管已经是目前各家中总里程最高的)。

  AEB能力提升的核心挑战是在大幅提升AEB场景覆盖率的基础上,不增加AEB的误触发,验证覆盖是开发中的难点。端到端AEB的验证也使用了群体智能,4亿公里分为10轮的里程验证。

  而在测试验证上,群体智能使得新的模型版本,可以对比人类驾驶的状态,也可以对比过去的稳态版本,形成反馈闭环。蔚来智驾团队告诉我们,「群体智能的验证非常接近于实车验证,大幅好于仿线年里,智能系统的架构每年都在发生翻天覆地的变化。

【责任编辑:管理员】
随机推荐 更多>>